4.8 Article

Construction of a biomimetic surface on microfluidic chips for biofouling resistance

Journal

ANALYTICAL CHEMISTRY
Volume 78, Issue 10, Pages 3399-3405

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0522963

Keywords

-

Ask authors/readers for more resources

A biomimetic surface has been formed on the poly( methyl methacrylate) (PMMA) microfluidic chips for biofouling resistance on the basis of a simple modification. Accordingly, an amphiphilic phospholipid copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (PMB) was developed to introduce the phosphorylcholine functional groups onto the PMMA surface via the anchoring of hydrophobic n-butyl methacrylate units. The 2-methacryloyloxyethyl phosphorylcholine segments could form hydrophilic domains, considered to be located on the surface, to provide a biocompatible surface. X-ray photoelectron spectroscopy and Fourier transform infrared spectra confirmed the success of surface functionalization. The PMB-modified microchips containing phosphorylcholine moieties exhibited more stable electroosmotic mobility compared with the untreated one. In addition to being characterized for minimized nonspecific adhesion of serum proteins and plasma platelets, the PMB-functionalized microchannels have been exemplified by electrophoresis of proteins. This one-step procedure offers an effective approach for a biomimetic surface design on microfluidic chips, which is promising in high-throughput and complex biological analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available