4.6 Article

Forced expression of desmin and desmin mutants in cultured cells:: Impact of myopathic missense mutations in the central coiled-coil domain on network formation

Journal

EXPERIMENTAL CELL RESEARCH
Volume 312, Issue 9, Pages 1554-1565

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2006.01.021

Keywords

desmin; myopathy; intermediate filaments; network formation

Ask authors/readers for more resources

We recently demonstrated that inherited disease-causing mutations clustered in the alpha-helical coiled-coil rod domain of the muscle-specific intermediate filament (IF) protein desmin display a wide range of inhibitory effects on regular in vitro assembly. In these studies, we showed that individual mutations exhibited phenotypes that were not, with respect to the severity of interference, predictable by our current knowledge of the structural design of IF proteins. Moreover, the behavior of some mutated proteins in a standard tissue culture cell expression system was found to be even more complex. Here, we systematically investigate the behavior of these disease mutants in four different cell types: three not containing desmin or the related IF protein vimentin and the standard fibroblast line 3T3, which has an extensive vimentin system. The ability of the mutants to form filaments in the vimentin-free cells varies considerably, and only the mutants forming IFs in vitro generate extended filamentous networks. Furthermore, these latter mutants integrate into the 3T3 vimentin network but all the others do not. instead, they cause the endogenous network of 3T3 vimentin to reorganize into perinuclear bundles. In addition, most of these assembly-deficient mutant desmins completely segregate from the vimentin system. instead, the small round to fibrillar particles formed distribute independently throughout the cytoplasm as well as between the collapsed vimentin filament arrays in the perinuclear area. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available