4.7 Article

Hypervelocity impact resistance of reinforced carbon-carbon/carbon-foam thermal protection systems

Journal

APPLIED SURFACE SCIENCE
Volume 252, Issue 14, Pages 5035-5050

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2005.07.047

Keywords

AUTODYN-3D; hypervelocity impact; space debris; CAV; TPS; CFOAM (R)

Ask authors/readers for more resources

Common aero vehicles (CAVs) are aerodynamically designed, (from orbit) re-entry, un-powered military vehicles planned to be used for deployment of the desired munitions with increased accuracy and range. In one of the currently considered designs of the CAVs, their outer skin is planned to be constructed from two-ply panels. The outer play is made of a carbon-carbon composite while the inner ply is constructed from a carbon-based foam. In the present work a transient non-linear-dynamics-based analysis is carried out in order to predict the extent of damage and the probability for failure of the carbon-carbon/carbon-foam CAV panels during potential hypervelocity impact of space debris with the outer surface of the CAVs. The results obtained show that the extent of damage scales with the normal component of the momentum associated with the debris particles just before the impact. In addition, it is found that despite its relatively low strength, the carbon-foam can provide a major increase in the resistance of the CAV panels towards penetration of the hypervelocity debris particles. This finding has been linked with an attendant consolidation of the foam, the process that is capable of absorbing a substantial amount of kinetic energy carried by the debris particles. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available