4.7 Article

Cytogenetic damage and genetic variants in the individuals susceptible to arsenic-induced cancer through drinking water

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 118, Issue 10, Pages 2470-2478

Publisher

WILEY
DOI: 10.1002/ijc.21640

Keywords

arsenic; skin lesions; cytogenetic damage; GSTT1; GSTM1; GSTP1

Categories

Ask authors/readers for more resources

In West Bengal, India, more than 300,000 arsenic-exposed people are showing symptoms of arsenic toxicity, which include cancers of skin and different internal organs. Since only 1.5-20% of the exposed population manifest arsenic-induced skin lesions, it Is thought that genetic variation might play an important role in arsenic toxicity and carcinogenicity. A total of 422 unrelated arsenic-exposed subjects (244 skin-symptomatic and 178 asymptomatic) were recruited for this study. Cytogenetic damage, as measured by chromosomal aberrations in lymphocytes and micronuclei formation in oral mucosa cells, urothelial cells and binucleated lymphocytes, was studied in unexposed, skin-symptomatic and asymptomatic individuals with similar socioeconomic status. Identification of null mutations in GSTT1 and GSTM1 genes were carried out by PCR amplification. GSTP1 SNPs, implicated in susceptibility to various cancers, were assessed by PCR-RFLP method. Symptomatic individuals had higher level of cytogenetic damage compared to asymptomatic individuals and asymptomatic individuals had significantly higher genotoxicity than unexposed individuals. No difference in allelic variants in GSTT1 and GSTP1 was observed between these 2 groups. Incidence of GSTMI null gene frequencies was significantly higher in the asymptomatic group. Individuals with GSTM1-positive (at least one allele) had significantly higher risk of arsenic-induced skin lesions (odds ratio, 1.73; 95% confidence interval, 1.24-2.22). These results show a protective role of GSTM1 null in arsenic toxicity. This study also indicates that asymptomatic individuals are sub clinically affected and are also significantly susceptible to arsenic-induced genotoxicity. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available