4.7 Article

Auditory motion perception activates visual motion areas in early blind subjects

Journal

NEUROIMAGE
Volume 31, Issue 1, Pages 279-285

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2005.11.036

Keywords

auditory motion processing; visual motion areas; blind subjects; fMRI

Ask authors/readers for more resources

We have previously shown that some visual motion areas can be specifically recruited by auditory motion processing in blindfolded sighted subjects [Poirier, C., Collignon, O., De Voider, A.G., Renier, L., Vanlierde, A., Tranduy, D., Scheiber, C., 2005. Specific activation of V5 brain area by auditory motion processing: an fMRI study. Brain Res. Cogn. Brain Res. 25, 650-658]. The present fMRI study investigated whether auditory motion processing may recruit the same brain areas in early blind subjects. The task consisted of simultaneously determining both the nature of a sound stimulus (pure tone or complex sound) and the presence or absence of its movement. When a movement was present, blind subjects had to identify its direction. Auditory motion processing, as compared to static sound processing, activated the brain network of auditory and visual motion processing classically observed in sighted subjects. Accordingly, brain areas previously considered as specific to visual motion processing could be specifically recruited in blind people by motion stimuli presented through the auditory modality. This indicates that the occipital cortex of blind people could be organized in a modular way, as in sighted people. The similarity of these results with those we previously observed in sighted subjects suggests that occipital recruitment in blind people could be mediated by the same anatomical connections as in sighted subjects. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available