4.8 Article

Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype

Journal

CANCER RESEARCH
Volume 66, Issue 10, Pages 5151-5158

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-1788

Keywords

-

Categories

Funding

  1. NCI NIH HHS [P50 CA10317, R01 CA90471] Funding Source: Medline

Ask authors/readers for more resources

Interactions between the tumor stromal compartment and cancer cells play an important role in the spread of cancer. In this study, we have used noninvasive in vivo magnetic resonance imaging (MRI) of two human breast cancer models with significantly different invasiveness, to quantify and understand the role of interstitial fluid transport, lymphatic-convective drain, and vascularization in the regional spread of breast cancer to the axillary lymph nodes. Quantitative fluorescence microscopy was done to morphometrically characterize lymphatic vessels in these tumors. Significant differences in vascular and extravascular transport variables as well as in lymphatic vessel morphology were detected between the two breast cancer models, which also exhibited significant differences in lymph node and lung metastasis. These data are consistent with a role of lymphatic drain in lymph node metastasis and suggest that increased lymph node metastasis may occur due to a combination of increased invasiveness, and reduced extracellular matrix integrity allowing increased pathways of least resistance for the transport of extravascular fluid, as well as tumor cells. It is also possible that lymph node metastasis occurred via the cancer cell-bearing tumoral lymphatic vessels. The congestion of these tumoral lymphatics with cancer cells may have restricted the entry and transport of macromolecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available