4.8 Article

The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA

Journal

CANCER RESEARCH
Volume 66, Issue 10, Pages 5173-5180

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-3087

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [GM069945] Funding Source: Medline

Ask authors/readers for more resources

S100A4, a member of the Ca2+-dependent S100 family of proteins, is a metastasis factor that is thought to regulate the motility and invasiveness of cancer cells. Previously, we showed that S100A4 specifically binds to nonmuscle myosin-IIA and promotes the unassembled state. S100A4, thus, provides a connection between the actomyosin cytoskeleton and the regulation of cellular motility; however, the step or steps in the motility cycle that are affected by S100A4 expression have not been investigated. To examine how the biochemical properties of S100A4 affect cell motility, we determined the effect of S100A4 expression on protrusive behavior during chemoattractant-stimulated motility. Our studies show that S100A4 modulates cellular motility by affecting cell polarization, with S100A4 expressing cells displaying few side protrusions and extensive forward protrusions during chemotaxis compared with control cells. To establish a direct link between S100A4 and the regulation of myosin-IIA function, we prepared an antibody to the S100A4 binding site on the myosin-IIA heavy chain that has comparable effects on myosin-IIA assembly as S100A4. Microinjection experiments show that the antibody elicits the same effects on cell polarization as S100A4. Our studies show for the first time that S100A4 promotes directional motility via a direct interaction with myosin-IIA. These findings establish S100A4 as a critical regulator of myosin-II function and metastasis-associated motility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available