4.4 Article

Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 291, Issue 1, Pages 202-206

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2006.03.006

Keywords

biomineralization; crystal structure; growth from solutions; collagen protein; hydroxyapatite; nanomaterials

Ask authors/readers for more resources

Bones are biocomposites with hierarchical structure that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Type I collagen proteins, acidic extracellular matrix proteins, play a critical role in mineral formation and many researches on artificial bones have been made inspired by nature using type I collagen derived from animal tissues. Here we report that recombinant human-like type I collagen, an acidic protein, can direct growth of hydroxyapatite (HA) nanocrystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. HA nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils. These artificial analogs of bone have a potential clinical application in bone repair. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available