4.8 Article

A new class of silica cross-linked micellar core-shell nanoparticles

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 19, Pages 6447-6453

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja060367p

Keywords

-

Ask authors/readers for more resources

Micellar nanoparticles made of surfactants and polymers have attracted wide attention in the materials and biomedical community for controlled drug delivery, molecular imaging, and sensing; however, their long-term stability remains a topic of intense study. Here we report a new class of robust, ultrafine silica core-shell nanoparticles formed from silica cross-linked, individual block copolymer micelles. Compared with pure polymeric micelles, the main advantage of the new core-shell nanoparticles is that they have significantly improved stability and do not break down during dilution. We also studied the drug loading and release properties of the silica cross-linked micellar particles, and we found that the new core-shell nanoparticles have a slower release rate which allows the entrapped molecules to be slowly released over a much longer period of time under the same experimental conditions. A range of functional groups can be easily incorporated through co-condensation with the silica matrix. The potential to deliver hydrophobic agents into cancer cells has been demonstrated. Because of their unique structures and properties, these novel core-shell nanoparticles could potentially provide a new nanomedicine platform for imaging, detection, and treatment, as well as novel colloidal particles and building blocks for mutlifunctional materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available