4.8 Article

Glia-derived D-serine controls NMDA receptor activity and synaptic memory

Journal

CELL
Volume 125, Issue 4, Pages 775-784

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2006.02.051

Keywords

-

Ask authors/readers for more resources

The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a coagonist like D-serine to its glycine site. AS D-serine is released exclusively by astrocytes, we studied the physiological impact of the glial environment on NMDA receptor-dependent activity and plasticity. To this end, we took advantage of the changing astrocytic ensheathing of neurons occurring in the supraoptic nucleus during lactation. We provide direct evidence that in this hypothalamic structure the endogenous coagonist of NMDA receptors is D-serine and not glycine. Consequently, the degree of astrocytic coverage of neurons governs the level of glycine site occupancy on the NMDA receptor, thereby affecting their availability for activation and thus the activity dependence of long-term synaptic changes. Such a contribution of astrocytes to synaptic metaplasticity fuels the emerging concept that astrocytes are dynamic partners of brain signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available