4.7 Article

An auxiliary grid method for computations of multiphase flows in complex geometries

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 214, Issue 2, Pages 858-877

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.10.024

Keywords

an auxiliary-grid method; particle tracking; a finite-volume/fron-tracking method; interfacial flows; complex goemetries

Ask authors/readers for more resources

A method is developed for computations of interfacial flows in complex geometries. The method combines a front-tracking method with a newly developed finite volume (FV) scheme and utilizes an auxiliary grid for computationally efficient tracking of interfaces in body-fitted curvilinear grids. The tracking, algorithm reduces particle tracking in a curvilinear grid to tracking on a uniform Cartesian grid with a look up table. The algorithm is general and can be used for other applications where Lagrangian particles have to be tracked in curvilinear or unstructured grids. The spatial and temporal errors are examined and it is shown that the method is globally second order accurate both in time and space. The method is implemented to solve two-dimensional (planar or axisymmetric) interfacial flows and is validated for a buoyancy-driven drops in a straight tube and the motion of buoyancy-driven drops in a periodically constricted channel. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available