4.6 Article

Contact line and contact angle dynamics in superhydrophobic channels

Journal

LANGMUIR
Volume 22, Issue 11, Pages 4998-5004

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la053375c

Keywords

-

Ask authors/readers for more resources

The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available