4.7 Article

Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation

Journal

JOURNAL OF NEUROSCIENCE
Volume 26, Issue 21, Pages 5819-5824

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5536-05.2006

Keywords

fMRI; BOLD; somatosensory cortex; motor cortex; tactile; human

Categories

Ask authors/readers for more resources

The whole human primary somatosensory (SI) cortex is activated by contralateral tactile stimuli, whereas its subarea 2 displays neuronal responses also to ipsilateral stimuli. Here we report on a transient deactivation of area 3b of the ipsilateral SI during long-lasting tactile stimulation. We collected functional magnetic resonance imaging data with a 3T scanner from 10 healthy adult subjects while tactile pulses were delivered at 1, 4, or 10 Hz in 25 s blocks to three right-hand fingers. In the contralateral SI cortex, activation [positive blood oxygenation level- dependent (BOLD) response] outlasted the stimulus blocks by 20 s, with an average duration of 45 s. In contrast, a transient deactivation (negative BOLD response) occurred in the ipsilateral rolandic cortex with an average duration of 18 s. Additional recordings on 10 subjects confirmed that the deactivation was not limited to the right SI but occurred in the SI cortex ipsilateral to the stimulated hand. Moreover, the primary motor cortex (MI) contained voxels that were phasically deactivated in response to both ipsilateral and contralateral touch. These data indicate that unilateral touch of fingers is associated, in addition to the well known activation of the contralateral SI cortex, with deactivation of the ipsilateral SI cortex and of the MI cortex of both hemispheres. The ipsilateral SI deactivation could result from transcallosal inhibition, whereas intracortical SI - MI connections could be responsible for the MI deactivation. The shorter time course of deactivation than activation would agree with stronger decay of inhibitory than EPSP at the applied stimulus repetition rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available