4.7 Article

Photochemical cleavage and release of para-substituted phenols from α-keto amides

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 71, Issue 11, Pages 4206-4215

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo060338x

Keywords

-

Ask authors/readers for more resources

In aqueous media alpha-keto amides 4-YC6H4OCH2COCON(R)CH(R')CH3 (5a, R = Et, R' = H; 5b, R = Pr-i, R' = Me) with para-substituted phenolic substituents (Y = CN, CF3, H) undergo photocleavage and release of 4-YC6H4OH with formation of 5-methyleneoxazolidin-4-ones 7a,b. For both 5a,b quantum yields range from 0.2 to 0.3. The proposed mechanism involves transfer of hydrogen from an N-alkyl group to the keto oxygen to produce zwitterionic intermediates 8a-c that eliminate the para-substituted phenolate leaving groups. The resultant imminium ions H2C=C(OH)CON+(R)=C(R')CH3 9a,b cyclize intramolecularly to give 7a,b. The quantum yields for photoelimination decrease in CH3CN, CH2Cl2, or C6H6 due to competing cyclization of 8a,b to give oxazolidin-4-one products which retain the leaving group 4-YC6H4O- (Y = H, CN). A greater tendency to undergo cyclization in nonaqueous media is observed for the N,N-diethyl amides 5a than the N,N-diisopropyl amides 5b. With para electron releasing groups Y = CH3 and OCH3 quantum yields for photoelimination significantly decrease and 1,3-photorearrangment of the phenolic group is observed. The 1,3-rearrangement involves excited state ArO-C bond homolysis to give para- substituted phenoxyl radicals, which can be observed directly in laser flash photolysis experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available