4.8 Article

Conformation of the synaptobrevin transmembrane domain

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602644103

Keywords

Fourier-transform infrared spectroscopy; membrane fusion; membrane protein; neuotransmission

Ask authors/readers for more resources

The synaptic vesicle protein synaptobrevin (also called VAMP, vesicle-associated membrane protein) forms part of the SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, which is essential for vesicle fusion. Additionally, the synaptobrevin transmembrane domain can promote lipid mixing independently of complex formation. Here, the conformation of the transmembrane domain was studied by using circular dichroism and attenuated total reflection Fourier-transform infrared spectroscopy. The synaptobrevin transmembrane domain has an a-helical structure that breaks in the juxtamembrane region, leaving the cytoplasmic domain unstructured. In phospholipid bilayers, infrared dichroism data indicate that the transmembrane domain adopts a 36 degrees angle with respect to the membrane normal, similar to that reported for viral fusion peptides. A conserved aromatic/basic motif in the juxtamembrane region may be causing this relatively high insertion angle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available