4.7 Article

Microstructural aspects determining the adhesive wear of tool steels

Journal

WEAR
Volume 260, Issue 9-10, Pages 1028-1034

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2005.07.001

Keywords

adhesive wear; tool steel; microstructure; carbides

Ask authors/readers for more resources

In many machining applications, adhesion of the workpiece to the tool is a major problem. Adhesion may be reduced by changing the microstructure of the tool steel, e.g. by increasing the carbide content. The present work deals with the influence of some microstructural parameters in the adhesive wear of tool steels. The investigations were conducted using six model alloys based on the powder metallurgy high speed steel AISI M4, all of which had the same martensitic matrix composition after heat treatment. The alloys had MC carbide contents which varied between 0 and 25 mol% in 5 mol% increments. Ball-on-disc experiments were carried out in ambient air at room temperature using austenitic stainless steel and aluminum balls as counterfaces. Wear tracks on the disks were characterized using both a scanning electron microscope and an optical profiler. The results show that two main parameters determine the adhesive wear behavior: the carbide content and the distance between carbides. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available