4.7 Article

Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 38, Issue 6, Pages 1364-1374

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2005.10.013

Keywords

forest soil; microbial activities; mineralization; nitrogen cycling; Norway spruce; polyphenols; Scots pine; tannins

Categories

Ask authors/readers for more resources

Tannins are polyphenolic compounds that may influence litter decomposition, humus formation, nutrient (especially N) cycling and ultimately, plant nutrition and growth. The aim of this study was to determine the response of C and N transformations in soil to tannins of different molecular weight from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles, tannic acid and cellulose. Arginine was added to test whether the soil microbial community was limited by the amount of N, and arginine + tannin treatments were used to test whether the effects of tannins could be counteracted by adding N. Soil and needle samples were taken from adjacent 70-year-old Scots pine and Norway spruce stands located in Kivalo, northern Finland. Tannins were extracted from needles and fractioned based on molecular weight; the fractions were then characterized by LC-MS and GC-MS. Light fractions contained tannin monomers and dinners as well as many other compounds, whereas heavy fractions consisted predominantly of polymerized condensed tannins. Spruce needles contained more procyanidin than prodelphinidin units, while in pine needles prodelphinidin units seemed to be dominant. The fractions were added to soil samples, pine fractions to pine soil and spruce fractions to spruce soil, and incubated at 14 degrees C for 6 weeks. CO2 evolution was followed throughout the experiment, and the rates of net mineralization of N and net nitrification, concentration of dissolved organic N (DON) and amounts of microbial biomass C and N were measured at the end of the experiment. The main effects of the fractions were similar in both soils. Light fractions strongly enhanced respiration and decreased net N mineralization, indicating higher immobilization of N in the microbial biomass. On the contrary, heavy fractions reduced respiration and slightly increased net N mineralization, suggesting toxic or protein-precipitating effects. The effects of tannic acid and cellulose resembled those of light fractions. DON concentrations generally decreased during incubation and were lower with heavy fractions than with light fractions. No clear differences were detected between the effects of light and heavy fractions on microbial biomass C and N. Treatments that included addition of arginine generally showed trends similar to treatments without it, although some differences between light and heavy fractions became more obvious with arginine than without it. Overall, light fractions seemed to act as a labile source of C for microbes, while heavy fractions were inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available