4.0 Article

Motor learning in man: A review of functional and clinical studies

Journal

JOURNAL OF PHYSIOLOGY-PARIS
Volume 99, Issue 4-6, Pages 414-424

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jphysparis.2006.03.007

Keywords

motor learning; functional imaging; sensorimotor transformation; laterality; intermanual transfer; mirror neurons

Ask authors/readers for more resources

This chapter reviews results of clinical and functional imaging studies which investigated the time-course of cortical and subcortical activation during the acquisition of motor a skill. During the early phases of learning by trial and error, activation in prefrontal areas, especially in the dorsolateral prefrontal cortex, is has been reported. The role of these areas is presumably related to explicit working memory and the establishment of a novel association between visual cues and motor commands. Furthermore, motor associated areas of the right hemisphere and distributed cerebellar areas reveal strong activation during the early motor learning. Activation in superior-posterior parietal cortex presumably arises from visuospatial processes, while sensory feedback is coded in the anterior-inferior parietal cortex and the neocerebellar structures. With practice, motor associated areas of the left-hemisphere reveal increased activity. This shift to the left hemisphere has been observed regardless of the hand used during training, indicating a left-hemispheric dominance in the storage of visuomotor skills. Concerning frontal areas, learned actions of sequential character are represented in the caudal part of the supplementary motor area (SMA proper), whereas the lateral premotor cortex appears to be responsible for the coding of the association between visuo-spatial information and motor commands. Functional imaging studies which investigated the activation patterns of motor learning under implicit conditions identified for the first, a motor circuit which includes lateral premotor cortex and SMA proper of the left hemisphere and primary motor cortex, for the second, a cognitive loop which consists of basal ganglia structures of the right hemisphere. Finally, activity patterns of intermanual transfer are discussed. After right-handed training, activity in motor associated areas maintains during performance of the mirror version, but is increased during the performance of the original-oriented version with the left hand. In contrary, increased activity during the mirror reversed action, but not during the original-oriented performance of the untrained right hand is observed after left-handed training. These results indicate the transfer of acquired right-handed information which reflects the mirror symmetry of the body, whereas spatial information is mainly transferred after left-handed training. Taken together, a combined approach of clinical lesion studies and functional imaging is a promising tool for identifying the cerebral regions involved in the process of motor learning and provides insight into the mechanisms underlying the generalisation of actions. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available