4.5 Article

cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 19, Issue 6, Pages 567-576

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-19-0567

Keywords

-

Ask authors/readers for more resources

To identify genes required for the hypersensitive response (HR), we performed expression profiling of tomato plants mounting a synchronized HR, followed by functional analysis of differentially expressed genes. By cDNA-AFLP analysis, the expression profile of tomato plants containing both the Cf-4 resistance gene against Cladosporium fulvum and the matching Avr4 avirulence gene of this fungus was compared with that of control plants. About 1% of the transcript-derived fragments (442 out of 50,000) were derived from a differentially expressed gene. Based on their sequence and expression, 192 fragments, referred to as Avr4-responsive tomato (ART) fragments, were selected for VIGS (virus-induced gene silencing) in Cf-4-transgenic Nicotiana benthamiana. Inoculated plants were analyzed for compromised HR by agroinfiltration of either the C fulvum Avr4 gene or the Inf1 gene of Phytophthora infestans, which invokes a HR in wild-type N. benthamiana. VIGS using 15 of the ART fragments resulted in a compromised HR, whereas VIGS with fragments of ART genes encoding HSP90, a nuclear GTPase, an L19 ribosomal protein, and most interestingly, a nucleotide binding-leucine rich repeat (NB-LRR)-type protein severely suppressed the HR induced both by Avr4 and Inf1. Requirement of an NB-LRR protein (designated NRC1, for NB-LRR protein required for HR-associated cell death 1) for Cf resistance protein function as well as Inf1-mediated HR suggests a convergence of signaling pathways and supports the recent observation that NB-LRR proteins play a role in signal transduction cascades downstream of resistance proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available