4.7 Article

Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells

Journal

NATURE NEUROSCIENCE
Volume 9, Issue 6, Pages 843-852

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1701

Keywords

-

Categories

Funding

  1. NEI NIH HHS [EY05690] Funding Source: Medline

Ask authors/readers for more resources

The optic nerve, like most mature CNS pathways, does not regenerate after injury. Through unknown mechanisms, however, macrophage activation in the eye stimulates retinal ganglion cells (RGCs) to regenerate long axons beyond the site of optic nerve injury. Here we identify the calcium (Ca2+)-binding protein oncomodulin as a potent macrophage-derived growth factor for RGCs and other neurons. Oncomodulin binds to rat RGCs with high affinity in a cyclic AMP (cAMP)-dependent manner and stimulates more extensive outgrowth than other known trophic agents. Depletion of oncomodulin from macrophage-conditioned media (MCM) eliminates the axon-promoting activity of MCM. The effects of oncomodulin involve downstream signaling via Ca2+/calmodulin kinase and gene transcription. In vivo, oncomodulin released from microspheres promotes regeneration in the mature rat optic nerve. Oncomodulin also stimulates outgrowth from peripheral sensory neurons. Thus, oncomodulin is a new growth factor for neurons of the mature central and peripheral nervous systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available