4.6 Article

Determination of the high-pressure crystal structure of BaWO4 and PbWO4

Journal

PHYSICAL REVIEW B
Volume 73, Issue 22, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.224103

Keywords

-

Ask authors/readers for more resources

We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in BaWO4 and PbWO4 at pressures of up to 56 GPa and 24 GPa, respectively. BaWO4 is found to undergo a pressure-driven phase transition at 7.1 GPa from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in PbWO4 at 9 GPa. We observe a second transition to another monoclinic structure which we identify as that of the isostructural phases BaWO4-II and PbWO4-III (space group P2(1)/n). We have also performed ab initio total-energy calculations which support the stability of this structure at high pressures in both compounds. The theoretical calculations further find that upon increase of pressure the scheelite phases become locally unstable and transform displacively into the fergusonite structure. The fergusonite structure is, however, metastable and can only occur if the transition to the P2(1)/n phases were kinetically inhibited. Our experiments in BaWO4 indicate that it becomes amorphous beyond 47 GPa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available