4.8 Article

Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts:: establishment of a heterodimerization map of group C and group S bZIP transcription factors

Journal

PLANT JOURNAL
Volume 46, Issue 5, Pages 890-900

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2006.02731.x

Keywords

two-hybrid analysis; protein-protein interaction; Arabidopsis thaliana; groups C and S bZIP transcription factors; heterodimerization

Categories

Ask authors/readers for more resources

In vivo protein-protein interactions are frequently studied by means of yeast two-hybrid analysis. However, interactions detected in yeast might differ considerably in the plant system. Based on GAL4 DNA-binding (BD) and activation domains (AD) we established an Arabidopsis protoplast two-hybrid (P2H) system. The use of Gateway((R))-compatible vectors enables the high-throughput screening of protein-protein interactions in plant cells. The efficiency of the system was tested by examining the homo- and heterodimerization properties of basic leucine zipper (bZIP) transcription factors. A comprehensive heterodimerization matrix of Arabidopsis thaliana group C and group S bZIP transcription factors was generated by comparing the results of yeast and protoplast two-hybrid experiments. Surprisingly, almost no homodimerization but rather specific and selective heterodimerization was detected. Heterodimers were preferentially formed between group C members (AtbZIP9, -10, -25, -63) and members of group S1 (AtbZIP1, -2, -11, -44, -53). In addition, significant but low-affinity interactions were detected inside group S1, S2 or C AtbZIPs, respectively. As a quantitative approach, P2H identified weak heterodimerization events which were not detected in the yeast system. Thus, in addition to cell biological techniques, P2H is a valuable tool for studying protein-protein interaction in living plant cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available