4.8 Article

Episodic fresh surface waters in the Eocene Arctic Ocean

Journal

NATURE
Volume 441, Issue 7093, Pages 606-609

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04692

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions(1) that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle(2) with precipitation exceeding evaporation at high latitudes(3). Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (similar to 50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an similar to 800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas(4-7) probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea(8). The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from similar to 10 degrees C to 13 degrees C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available