4.5 Article

Manganese-induced neurotoxicity: The role of astroglial-derived nitric oxide in striatal interneuron degeneration

Journal

TOXICOLOGICAL SCIENCES
Volume 91, Issue 2, Pages 521-531

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfj150

Keywords

astrocytes; manganese; nitric oxide; neurodegeneration; apoptosis; dopamine; basal ganglia; movement disorders; inflammation; blood-brain barrier

Categories

Funding

  1. NIEHS NIH HHS [ES012941] Funding Source: Medline

Ask authors/readers for more resources

Chronic exposure to excessive manganese (Mn) is the cause of a neurodegenerative movement disorder, termed manganism, resulting from degeneration of neurons within the basal ganglia. Pathogenic mechanisms underlying this disorder are not fully understood but involve inflammatory activation of glial cells within the basal ganglia. It was postulated in the present studies that reactive astrocytes are involved in neuronal injury from exposure to Mn through increased release of nitric oxide. C57B1/6 mice subchronically exposed to Mn by intragastric gavage had increased levels of Mn in the striatum and displayed diminutions in both locomotor activity and striatal DA content. Mn exposure resulted in neuronal injury in the striatum and globus pallidus, particularly in regions proximal to the microvasculature, indicated by histochemical staining with fluorojade and cresyl fast violet. Neuropathological assessment revealed marked perivascular edema, with hypertrophic endothelial cells and diffusion of serum albumin into the perivascular space. Immunofluorescence studies employing terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (DUTP)-biotin nick-end labeling revealed the presence of apoptotic neurons expressing neuronal nitric oxide synthase (NOS), choline acetyltransferase, and enkephalin in both the striatum and globus pallidus. In contrast, soma and terminals of dopaminergic neurons were morphologically unaltered in either the substantia nigra or striatum, as indicated by immunohistochemical staining for tyrosine hydroxylase. Regions with evident neuronal injury also displayed increased numbers of reactive astrocytes that coexpressed inducible NOS2 and localized with areas of increased neuronal staining for 3-nitrotyrosine protein adducts, a marker of NO formation. These data suggest a role for astrocyte-derived NO in injury to striatal-pallidal interneurons from Mn intoxication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available