4.7 Article

Inhibition of basic leucine zipper transcription is a major mediator of atrial dilatation

Journal

CARDIOVASCULAR RESEARCH
Volume 70, Issue 3, Pages 543-554

Publisher

OXFORD UNIV PRESS
DOI: 10.1016/j.cardiores.2006.02.018

Keywords

trial function; hypertrophy; connexins; gene expression

Ask authors/readers for more resources

Objective: Atrial fibrillation is the most prevalent clinically significant cardiac arrhythmia. Atrial dilatation, a predictor of atrial fibrillation, is thought to result from increased ventricular pressure. However, the underlying molecular mechanisms responsible for atrial dilatation are largely unknown. Here we sought to examine whether the expression of a basic leucine zipper inhibitor protein, JDP2, in the heart is sufficient for the generation of atrial dilatation. Methods: A tetracycline-regulated transgene was used to express JDP2 specifically in the mouse heart. Mice hearts were dissected and subjected to Northern and Western analysis, or analyzed by ECG recording and echocardiography. Regulation of gene expression was studied using electromobility shift assays and luciferase gene reporter analysis. Results: Expression of JDP2 resulted in massive bi-atrial dilatation, defects in conduction, and a lethal phenotype. These effects were developmentally independent, acquired during adulthood, and were reversible upon abolishing of JDP2 expression. Connexin 40 and myosin light chain 2a expression were identified as potential target genes. Conclusion: Expression of basic leucine zipper transcription inhibitors is sufficient to results in atrial dilatation. This dilatation is acquired postnatally and is reversible. Thus, basic leucine zipper transcription inhibitors may be a relevant therapeutic target for preventing atrial dilatation and atrial fibrillation. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available