4.6 Article

Simulations of ultracold bosonic atoms in optical lattices with anharmonic traps

Journal

PHYSICAL REVIEW A
Volume 73, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.063606

Keywords

-

Ask authors/readers for more resources

We report results of quantum Monte Carlo simulations in the canonical and the grand-canonical ensemble of the two- and three-dimensional Bose-Hubbard model with quadratic and quartic confining potentials. The quantum criticality of the superfluid-Mott insulator transition is investigated both on the boundary layer separating the two coexisting phases and at the center of the traps where the Mott-insulating phase is first established. Recent simulations of systems in quadratic traps have shown that the transition is not in the critical regime due to the finite gradient of the confining potential and that critical fluctuations are suppressed. In addition, it has been shown that quantum critical behavior is recovered in flat confining potentials as they approach the uniform regime. Our results show that quartic traps display a behavior similar to quadratic ones, yet locally at the center of the traps the bulk transition has enhanced critical fluctuations in comparison to the quadratic case. Therefore quartic traps provide a better prerequisite for the experimental observation of true quantum criticality of ultracold bosonic atoms in optical lattices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available