4.6 Article

Regulation of protein synthesis by leucine starvation involves distinct mechanisms in mouse C2C12 myoblasts and myotubes

Journal

JOURNAL OF NUTRITION
Volume 136, Issue 6, Pages 1466-1471

Publisher

AMER SOC NUTRITION-ASN
DOI: 10.1093/jn/136.6.1466

Keywords

myogenic differentiation; leucine starvation; protein translation; mTOR; S6K1

Ask authors/readers for more resources

Leucine modulates protein translation in higher eukaryotes by affecting phosphorylation and the function of proteins that regulate the initiation and/or elongation steps. These include the initiation factor 4E binding protein 1 (4E-BP1), initiation factor 4E (eIF4E), initiation factor 2 (eIF2 alpha), ribosomal S6 kinases (S6K1/2), and elongation factor 2 (eEF2). The alteration of protein translation by leucine starvation was studied during myogenic differentiation using the mouse C2C12 cell line as well as the role of rapamycin-sensitive mTOR (mammalian target of rapamycin) in the signaling of leucine in myotubes. A time course study showed that 1 h of leucine starvation decreased protein synthesis and S6K1 phosphorylation in myoblasts, whereas 3-5 h of starvation were necessary to induce such an alteration in myotubes. Although S6K1 phosphorylation was reduced in leucine-deprived myotubes, S6K2 and S6 phosphorylation were not affected. In contrast, rapamycin decreased the phosphorylation of S6K2 and S6 in myotubes. It is therefore likely that under the conditions present, the rapamycin-sensitive mTOR was not affected by leucine starvation. S6K1 dephosphorylation may thus be mTOR independent, and the functional mTOR/ S6K2 pathway may maintain S6 phosphorylation. An increased phosphorylation of eEF2 in myoblasts and myotubes indicated that global protein synthesis was reduced via a decrease in translation elongation. An increased association between 4E-BP1 and eIF4E, and increased phosphorylation of eIF2a also contributed to decreasing protein synthesis in leucine-starved myoblasts. In contrast, in leucine-starved myotubes, there were no change in the 4E-BP1-eIF4E association or eIF2a phosphorylation, suggesting that these factors were not rate limiting for decreasing protein synthesis in leucine-deprived myotubes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available