4.4 Article

Host-parasitoid dynamics of a generalized Thompson model

Journal

JOURNAL OF MATHEMATICAL BIOLOGY
Volume 52, Issue 6, Pages 719-732

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00285-005-0346-2

Keywords

-

Ask authors/readers for more resources

A discrete-time host-parasitoid model including host-density dependence and a generalized Thompson escape function is analyzed. This model assumes that parasitoids are egg-limited but not search-limited, and is proven to exhibit five types of dynamics: host failure in which the host goes extinct in the parasitoid's presence or absence, unconditional parasitoid failure in which the parasitoid always goes extinct while the host persists, conditional parasitoid failure in the host and the parasitoid go extinct or coexist depending on the initial host-parasitoid ratio, parasitoid driven extinction in which the parasitoid invariably drives the host to extinction, and coexistence in which the host and parasitoid coexist about a global attractor. The latter two dynamics only occur when the parasitoid's maximal rate of growth exceeds the host's maximal rate of growth. Moreover, coexistence requires parasitism events to be sufficiently aggregated. Small additive noise is proven to alter the dynamical outcomes in two ways. The addition of noise to parasitoid driven extinction results in random outbreaks of the host and parasitoid with varying intensity. Additive noise converts conditional parasitoid failure to unconditional parasitoid failure. Implications for classical biological control are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available