4.6 Article

Quantum coherence of hard-core bosons: Extended, glassy, and Mott phases

Journal

PHYSICAL REVIEW A
Volume 73, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.063610

Keywords

-

Ask authors/readers for more resources

Quantum phases of hard core bosons (HCBs) confined in a one-dimensional quasiperiodic (QP) potential are studied within the theoretical framework of Hanbury-Brown-Twiss interferometry. The QP potential induces a cascade of Mott-like band-insulator phases in the extended regime, in addition to the Mott insulator, Bose glass, and superfluid phases. The new phases are incompressible and have zero superfluid fraction. At critical filling factors, the appearance of these insulating phases is heralded by a peak to dip transition in the interferogram, which reflects the fermionic aspect of HCBs. In the localized phase, the interference pattern exhibits an hierarchy of peaks at the reciprocal lattice vectors of the system. Our study demonstrates that in contrast to the momentum distribution, HBTI provides an effective method to distinguish Mott and glassy phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available