4.6 Article

Entanglement entropy and the Berry phase in the solid state

Journal

PHYSICAL REVIEW B
Volume 73, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.245115

Keywords

-

Ask authors/readers for more resources

The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one-dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to pi x(odd integer) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss how this lower bound is related to vanishing of the expectation value of a certain nonlocal operator which creates a kink in 1D systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available