4.3 Article

Stage-dependent dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes

Journal

MOLECULAR REPRODUCTION AND DEVELOPMENT
Volume 73, Issue 6, Pages 774-783

Publisher

WILEY
DOI: 10.1002/mrd.20468

Keywords

dishevelled; cell polarity; cytoskeleton; spermatogenesis

Ask authors/readers for more resources

Dishevelled (Dsh in Drosophila or DVL in mice) is a member of the highly conserved Wg/Wnt signaling pathway, which regulates important processes such as cell proliferation, polarity, and specification of cell fate. Three orthologous genes of Dishevelled (Dvl-1, Dvl-2, and Dvl-3) have been found in both humans and mice. They play pivotal roles in regulating cell morphology and a variety of changes in cell behaviors. In the present study, we show that the expression of Dvl-1 is stage-dependent during mouse spermatogenesis, although Dvl-2 and Dvl-3 show relative consistent expression. The expression of Dvl-1 mRNA first appears in pachytene spermatocytes, increases in round and elongating spermatids, and then turns to an undetectable level in mature sperm cells. Analyses of immunohistochemistry and immunofluorescence staining show that DVL-1 is present diffusely in the cytoplasm of pachytene spermatocytes and exhibits mainly a vesicular pattern and perinuclear distribution and a weak diffusely cytoplasmic signal in round and elongating spermatids. The vesicular pattern of DVL-1 has been observed by previous studies in somatic cells, and suggested to play roles in signal transduction. Immunoprecipitation experiments show that DVL-1 coimmunprecipitates with spermatogenic cells beta-actin rather than alpha-tubulin. These results indicate that DVL-1 may be involved in spermatid morphological changes during mouse spermiogenesis through mediating signal transduction and/or regulating actin cytoskeleton organization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available