4.5 Article

Differential expression of cyclin-dependent kinase inhibitors, p27Kip1 and p57Kip2, by corticotropin in rat adrenal cortex

Journal

JOURNAL OF ENDOCRINOLOGY
Volume 189, Issue 3, Pages 671-679

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1677/joe.1.06419

Keywords

-

Ask authors/readers for more resources

An important role for the cyclin-dependent kinase inhibitors (CDKIs), p27Kip1 and p57Kip2, in the proliferation and differentiation of adrenal cells has been suggested by their knockout mice, which display adrenal hyperplasia. Adrenal development and function are primarily regulated by ACTH. In the present study, we investigated the effects of ACTH on the expression of p27Kip1., p57Kip2 and proliferating cell nuclear antigen (PCNA) in rat adrenals. Male Wistar rats were treated with dexamethasone (Dex) to inhibit endogenous ACTH secretion. ACTH was then administered to the rats, and the adrenals were examined by Western blot and immunohistochemical analyses. Dex treatment induced shrinkage of adrenals where no PCNA-expressing cells were detected, but most of the cells expressed p27Kip1. Subsequent ACTH treatment resulted in the marked suppression of p27Kip1 expression, specifically in adrenocortical cells at 12 h after the stimulus. At 48 h, the p27Kip1 suppression still continued in the cortex, while the PCNA-expressing cells appeared mainly around the zona glomerulosa and increased at 72 h. At this time, the p27Kip1-expressing cells also appeared in the same zone. In contrast to p27Kip1, the expression of p57Kip2 was not detected in the Dex-treated adrenal. However, its expression was markedly induced by ACTH in the zona glomerulosa at 48 and 72 h. The results demonstrate that the primary site for mitogenic action of ACTH in rat adrenocortex is the zona glomerulosa, and that ACTH modulates proliferation of adrenocortical cells by regulating p27Kip1 and p57Kip2 expression in a time- and site-specific manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available