4.7 Article Proceedings Paper

Synthesis and performance of advanced ceramic lasers

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 89, Issue 6, Pages 1936-1944

Publisher

WILEY
DOI: 10.1111/j.1551-2916.2006.01043.x

Keywords

-

Ask authors/readers for more resources

This paper reports recent progress in the production of polycrystalline Nd:YAG (Y3Al5O12), Nd:YSAG (Y3Sc1.0Al4.0O12), Yb:YSAG ceramics, and a Nd-doped YAG single crystal with an almost perfect pore-free structure by advanced ceramic processing. The laser conversion efficiency of pore-free polycrystalline Nd- and Yb-doped ceramics is extremely high, and their optical qualities are comparable with that of commercial high-quality Nd:YAG single crystals. We have also succeeded in the fabrication of a Nd:YAG single crystal, which can be used for laser oscillation, by the solid-state reaction method. Laser oscillation efficiency was very low when the pores remained inside the single crystal; however, the laser oscillation efficiency of the pore-free Nd:YAG single crystal was slightly higher than that of polycrystalline Nd:YAG ceramics having high optical quality. From this fact, it was recognized that optical scattering occurs mainly in the residual pores inside the Nd:YAG ceramics and the scattering at the grain boundary is very less. In addition, we confirmed that a heavily doped Nd:YAG single crystal can be fabricated by the sintering method. Moreover, we have demonstrated the fabrication of a composite ceramic with complicated structures without the need for precise polishing and diffusion bonding. Advanced ceramic processing, which enables design flexibility of the laser element, presented in this work is important in the development of a high-performance laser (high efficiency, high beam quality, and high output energy, etc.).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available