4.8 Article

Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein

Journal

CELL
Volume 125, Issue 5, Pages 903-914

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2006.04.027

Keywords

-

Ask authors/readers for more resources

GroEL and GroES form a chaperonin nano-cage for proteins up to similar to 60 kDa to fold in isolation. Here we explored the structural features of the chaperonin cage critical for rapid folding of encapsulated substrates. Modulating the volume of the GroEL central cavity affected folding speed in accordance with confinement theory. Small proteins (similar to 30 kDa) folded more rapidly as the size of the cage was gradually reduced to a point where restriction in space slowed folding dramatically. For larger proteins (similar to 40-50 kDa), either expanding or reducing cage volume decelerated folding. Additionally, interactions with the C-terminal, mildly hydrophobic Gly-Gly-Met repeat sequences of GroEL protruding into the cavity, and repulsion effects from the negatively charged cavity wall were required for rapid folding of some proteins. We suggest that by combining these features, the chaperonin cage provides a physical environment optimized to catalyze the structural annealing of proteins with kinetically complex folding pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available