4.6 Article

Halofuginone induces matrix metalloproteinases in rat hepatic stellate cells via activation of p38 and NFκB

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 22, Pages 15090-15098

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M600030200

Keywords

-

Ask authors/readers for more resources

The semisynthetic plant alkaloid halofuginone (HAL) was reported to prevent and partly reverse experimental liver fibrosis. However, its mechanisms of action are poorly understood. We therefore aimed to determine the antifibrotic potential of HAL and to characterize involved signal transduction pathways in hepatic stellate cells (HSCs). Results were compared with its in vivo effects in a rat model of reversal of established liver fibrosis induced by thioacetamide. In vitro HAL inhibited HSC proliferation and migration dose dependently at submicromolar concentrations. HAL ( 200 nM) up-regulated matrix metalloproteinase (MMP)-3 and MMP-13 expression between 10- and 50-fold, resulting in a 2- to 3-fold increase of interstitial collagenase activity. Procollagen alpha 1(I) and MMP-2 transcript levels were suppressed 2- to 3-fold, whereas expression of other profibrogenic mRNAs remained unaffected. p38 mitogen-activated protein kinase ( p38 MAPK) and nuclear factor kappa B (NF kappa B) pathways were activated by HAL, and specific inhibitors of p38 MAPK and NF kappa B dose dependently inhibited MMP-13 induction. Treatment with HAL did not affect HSC viability, and observed effects were reversible after its removal. In vivo HAL up-regulated MMP-3 and -13 mRNA expression 1.5- and 2- fold, respectively, in cirrhotic rats, whereas tissue inhibitor of metalloproteinase-1 was suppressed by 50%. In conclusion, submicromolar concentrations of HAL inhibit HSC proliferation and migration and up-regulate their expression of fibrolytic MMP-3 and -13 via activation of p38 MAPK and NF kappa B. The remarkable induction of MMP-3 and -13 makes HAL a promising agent for antifibrotic combination therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available