4.7 Article

IκBε provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression

Journal

JOURNAL OF CELL BIOLOGY
Volume 173, Issue 5, Pages 659-664

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200510155

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [GM08326, T32 GM008326, R01 GM071573, GM071573] Funding Source: Medline

Ask authors/readers for more resources

NF-kappa B signaling is known to be critically regulated by the NF-kappa B-inducible inhibitor protein I kappa B alpha. The resulting negative feedback has been shown to produce a propensity for oscillations in NF-kappa B activity. We report integrated experimental and computational studies that demonstrate that another I kappa B isoform, I kappa B epsilon, also provides negative feedback on NF-kappa B activity, but with distinct functional consequences. Upon stimulation, NF-kappa B-induced transcription of I kappa B epsilon is delayed, relative to that of I kappa B alpha, rendering the two negative feedback loops to be in antiphase. As a result, I kappa B epsilon has a role in dampening I kappa B alpha-mediated oscillations during long-lasting NF-kappa B activity. Furthermore, we demonstrate the requirement of both of these distinct negative feedback regulators for the termination of NF-kappa B activity and NF-kappa B-mediated gene expression in response to transient stimulation. Our findings extend the capabilities of a computational model of I kappa B-NF-kappa B signaling and reveal a novel regulatory module of two antiphase negative feedback loops that allows for the fine-tuning of the dynamics of a mammalian signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available