4.6 Article

Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase

Journal

LANGMUIR
Volume 22, Issue 12, Pages 5443-5450

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la060184g

Keywords

-

Ask authors/readers for more resources

A microscopic and voltammetric characterization of lactate oxidase- (LOx-) based bioanalytical platforms for biosensor applications is presented. In this context, emphasis is placed on amperometric biosensors based on LOx that have been immobilized by direct absorption on carbon surfaces, in particular, glassy carbon ( GC) and highly ordered pyrolytic graphite ( HOPG). The immobilized LOx layers have been characterized using atomic force microscopy (AFM) under liquid conditions and cyclic voltammetry. In addition, spatially resolved mapping of enzymatic activity has been carried out using scanning electrochemical microscopy (SECM). In the presence of lactate with hydroxymethylferrocene (HMF) as a redox mediator in solution, biosensors obtained by direct adsorption of LOx onto GC electrodes exhibited a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. The proposed biosensor also exhibits good operating performance in terms of linearity, detection limit, and lifetime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available