4.8 Article

Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity

Journal

EMBO JOURNAL
Volume 25, Issue 11, Pages 2338-2346

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.emboj.7601095

Keywords

cell cycle; Hog1; Hsl1; osmostress; SAPK

Ask authors/readers for more resources

Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress leads to activation of the Hog1 SAPK, which controls cell cycle at G(1) by the targeting of Sic1. Here, we show that survival to osmostress also requires regulation of G(2) progression. Activated Hog1 interacts and directly phosphorylates a residue within the Hs17-docking site of the Hsl1 checkpoint kinase, which results in delocalization of Hsl7 from the septin ring and leads to Swe1 accumulation. Upon Hog1 activation, cells containing a nonphosphorylatable Hsl1 by Hog1 are unable to promote Hsl7 delocalization, fail to arrest at G2 and become sensitive to osmostress. Together, we present a novel mechanism that regulates the Hsl1-Hsl7 complex to integrate stress signals to mediate cell cycle arrest and, demonstrate that a single MAPK coordinately modulates different cell cycle checkpoints to improve cell survival upon stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available