4.8 Article

Phase-field crystals with elastic interactions

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.225504

Keywords

-

Ask authors/readers for more resources

We report on a novel extension of the recently introduced phase-field crystal (PFC) method [Elder , Phys. Rev. Lett. 88, 245701 (2002)], which incorporates elastic interactions as well as crystal plasticity and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster than diffusive time scales. This allows us to preserve the quintessential advantage of the PFC model: the ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation in our model and show that simulations of grain growth and elastoplastic deformation are consistent with the microstructural properties of nanocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available