4.7 Article Proceedings Paper

A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 293, Issue 3-5, Pages 645-666

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2005.12.023

Keywords

-

Ask authors/readers for more resources

A numerical model is presented to predict vibrations in the free field from excitation due to metro trains in tunnels. The three-dimensional dynamic tunnel-soil interaction problem is solved with a subdomain formulation, using a finite element formulation for the tunnel and a boundary element method for the soil. The periodicity of the geometry in the longitudinal direction of the tunnel is exploited using the Floquet transform, limiting the discretization to a single-bounded reference cell. The responses of two different types of tunnel due to a harmonic load on the tunnel invert are compared, both in the frequency-wavenumber and spatial domains. The first tunnel is a shallow cut-and-cover masonry tunnel on the Paris metro network, embedded in layers of sand, while the second tunnel is a deep bored tunnel of London Underground, with a cast iron lining and embedded in the London clay. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available