4.5 Article

PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase

Journal

JOURNAL OF CELL SCIENCE
Volume 119, Issue 12, Pages 2518-2531

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02965

Keywords

PML nuclear body; heterochromatin; chromatin-remodelling function; G2 phase; ICF syndrome; XY body

Categories

Ask authors/readers for more resources

We have recently demonstrated that heterochromatin HP1 proteins are aberrantly distributed in lymphocytes of patients with immunodeficiency, centromeric instability and facial dysmorphy (ICF) syndrome. The three HP1 proteins accumulate in one giant body over the 1qh and 16qh juxtacentromeric heterochromatins, which are hypomethylated in ICF. The presence of PML (promyelocytic leukaemia) protein within this body suggests it to be a giant PML nuclear body (PML-NB). The structural integrity of PML-NBs is of major importance for normal cell functioning. Nevertheless, the structural organisation and the functions of these nuclear bodies remain unclear. Here, we take advantage of the large size of the giant body to demonstrate that it contains a core of satellite DNA with proteins being organised in ordered concentric layers forming a sphere around it. We extend these results to normal PML-NBs and propose a model for the general organisation of these structures at the G2 phase. Moreover, based on the presence of satellite DNA and the proteins HP1, BRCA1, ATRX and DAXX within the PML-NBs, we propose that these structures have a specific function: the re-establishment of the condensed heterochromatic state on late-replicated satellite DNA. Our findings that chromatin-remodelling proteins fail to accumulate around satellite DNA in PML-deficient NB4 cells support a central role for PML protein in this cellular function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available