4.8 Article

Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 23, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.237401

Keywords

-

Ask authors/readers for more resources

We investigate photoluminescence from a high-density electron-hole plasma in semiconductor quantum wells created via intense femtosecond excitation in a strong perpendicular magnetic field, a fully quantized and tunable system. At a critical magnetic field strength and excitation fluence, we observe a clear transition in the band-edge photoluminescence from omnidirectional output to a randomly directed but highly collimated beam. In addition, changes in the linewidth, carrier density, and magnetic field scaling of the photoluminescence spectral features correlate precisely with the onset of random directionality, indicative of cooperative recombination from a high-density population of free carriers in a semiconductor environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available