4.8 Article

Sequence-resolved detecton of pausing by single RNA polymerase molecules

Journal

CELL
Volume 125, Issue 6, Pages 1083-1094

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2006.04.032

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM057035] Funding Source: Medline

Ask authors/readers for more resources

Transcriptional pausing by RNA polymerase (RNAP) plays an important role in the regulation of gene expression. Defined, sequence-specific pause sites have been identified biochemically. Single-molecule studies have also shown that bacterial RNAP pauses frequently during transcriptional elongation, but the relationship of these ubiquitous pauses to the underlying DNA sequence has been uncertain. We employed an ultrastable optical-trapping assay to follow the motion of individual molecules of RNAP transcribing templates engineered with repeated sequences carrying imbedded, sequence-specific pause sites of known regulatory function. Both the known and ubiquitous pauses appeared at reproducible locations, identified with base-pair accuracy. Ubiquitous pauses were associated with DNA sequences that show similarities to regulatory pause sequences. Data obtained for the lifetimes and efficiencies of pauses support a model where the transition to pausing branches off of the normal elongation pathway and is mediated by a common elemental state, which corresponds to the ubiquitous pause.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available