4.6 Article

A sodium bicarbonate transporter from sea urchin spermatozoa

Journal

GENE
Volume 375, Issue -, Pages 37-43

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2006.02.005

Keywords

DIDS; electroneutral transporter; anion exchanger; intracellular pH; solute carrier family 4

Funding

  1. NICHD NIH HHS [HD12986] Funding Source: Medline

Ask authors/readers for more resources

Bicarbonate (HCO3-) transporters play crucial roles in cell-signaling pathways and are essential for cell viability. Here we describe the first cloning and localization of a HCO3- transporter from sperm of the sea urchin, Strongylocentrotus purpuratus. The deduced protein is 1214 amino acids and has a calculated molecular mass of 135 kDa. The annotated protein coding region of the transporter gene consists of 24 exons. The most similar human protein is the Na+/HO3- cotransporter-2 (NBC2), which has 53% identity and 68% similarity to the sea urchin protein. The sea urchin protein shares the major structural features of HCO3- transporters, including 13 transmembrane segments, a DIDS (4,4diiodothiocyanatostilbene-2, 2-disulfonic acid) binding motif and N-linked glycosylation sites. It has longer N- and C-terminal cytoplasmic domains compared to human HCO3- transporters. The sea urchin protein possesses a relatively long 3rd extracellular loop with four conserved cysteine residues. This is characteristic for Na+/HCO3- cotransporters, but not for anion exchangers, suggesting that the sea urchin protein is a Na+/HCO3- cotransporter. It is therefore designated as Sp-NBC. A neighbor-joining tree shows that Sp-NBC branches closer to the electroneutral type of HCO3- transporters. Western immunoblots and immunoflourescence show that Sp-NBC is concentrated in the flagellar plasma membrane, suggesting a role in motility regulation. (c) 2006 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available