4.6 Article

Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ

Journal

GENE
Volume 375, Issue -, Pages 75-79

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2006.02.019

Keywords

human brain evolution; corticogenesis; microcephaly; adaptive evolution; positive selection

Ask authors/readers for more resources

Primary microcephaly is a developmental defect of the brain charactefized by severely reduced brain size but an absence of other overt abnormalities. Mutations in several loci have been linked to primary microcephaly. The underlying genes for two of these were recently identified as CDK5RAP2 and CENPJ. Here, we focus on CDK5RAP2 and show that the protein evolutionary rate of this gene is significantly higher in primates than rodents or carnivores. We further show that the evolutionary rate within primates is particularly high in the human and chimpanzee terminal branches. Thus, the pattern of molecular evolution seen in CDK5RAP2 appears to parallel, at least approximately, that seen in two other previously identified primary microcephaly genes, microcephalin and ASPM. We also briefly discuss CENPJ, which similarly exhibits higher rate of protein evolution in primates as compared to rodents and carnivores. Together, the evolutionary patterns of all four presently known primary microcephaly genes are consistent with the hypothesis that genes regulating brain size during development might also play a role in brain evolution in primates and especially humans. (c) 2006 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available