4.8 Article

Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.246803

Keywords

-

Ask authors/readers for more resources

Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we propose an efficient approach to produce and control the quantum entanglement of three macroscopic coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits, we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum mechanics and the commutativity of classical physics is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available