4.6 Article

Characterization of histone (H1B) oxalate binding protein in experimental urolithiasis and bioinformatics approach to study its oxalate interaction

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2006.04.086

Keywords

calcium oxalate crystals; hyperoxaluria; historic H1B; oxalate binding protein; seed crystals; PDB; 2FE2

Ask authors/readers for more resources

The rat kidney HI oxalate binding protein was isolated and purified. Oxalate binds exclusively with H1B fraction of H1 histone. Oxalate binding activity is inhibited by lysine group modifiers such as 4',4'-diisothiostilbene-2,2-disulfonic acid (DIDS) and pyridoxal phosphate and reduced in presence of ATP and ADP. RNA has no effect on oxalate binding activity of H1B whereas DNA inhibits oxalate binding activity. Equilibrium dialysis method showed that H1B oxalate binding protein has two binding sites for oxalate, one with high affinity, other with low affinity. Historic H1B was modeled in silico using Modeller8v1 software tool since experimental structure is not available. In silico interaction studies predict that histone H1B-oxalate interaction take place through lysine121, lysinel39, and leucine68. H1B oxalate binding protein is found to be a promoter of calcium oxalate crystal (CaOx) growth. A 10% increase in the promoting activity is observed in hyperoxaluric rat kidney H I B. Interaction of H1B oxalate binding protein with CaOx crystals favors the formation of intertwined calcium oxalate dehydrate (COD) crystals as studied by light microscopy. Intertwined COD crystals and aggregates of COD crystals were more pronounced in the presence of hyperoxalauric H1B. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available