4.8 Article

Directional sensing in eukaryotic chemotaxis: A balanced inactivation model

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0601302103

Keywords

dynamics; modeling

Ask authors/readers for more resources

Many eukaryotic cells, including Dictyostefium discoideum amoebae, fibroblasts, and neutrophils, are able to respond to chemoattractant gradients with high sensitivity. Recent studies have demonstrated that, after the introduction of a chemoattractant gradient, several chemotaxis pathway components exhibit a subcellular reorganization that cannot be described as a simple amplification of the external gradient. Instead,this reorganization has the characteristics of a switch, leading to a well defined front and back. Here, we propose a directional sensing mechanism in which two second messengers are produced at equal rates. The diffusion of one of them, coupled with an inactivation scheme, ensures a switch-like response to external gradients for a large range of gradient steepness and average concentration. Furthermore, our model is able to reverse the subcellular organization rapidly, and its response to multiple simultaneous chemoattractant sources is in good agreement with recent experimental results. Finally, we propose that the dynamics of a heterotrimeric G protein might allow for a specific biochemical realization of our model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available