4.7 Article

The signaling pathways linking to lysophosphatidic acid-promoted meiotic maturation in mice

Journal

LIFE SCIENCES
Volume 79, Issue 5, Pages 506-511

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2006.01.028

Keywords

lysophosphatidic acid; oocyte maturation; oocyte-cumulus cells complexes

Ask authors/readers for more resources

The signaling pathways linking to lysophosphatidic acid-promoted meiotic maturation in mice were studied. When mouse oocyte-cumulus cells complexes were cultured with 10(-5) M lysophosphatidic acid (the LPA group), the rate of oocyte nuclear maturation was significantly increased. Additions of pertussis toxin, genistein, U73122, Ro320432, PD98059 or SB203580 significantly suppressed the increase in lysophosphatidic acid-stimulated nuclear maturation rate. These results suggested that Gi/o-coupled lysophosphatidic acid receptors activate phosphatidylinositol-specific phospholipase C, and result in ERK and MAP kinase activation, which is triggered by diacylglycerol-dependent protein kinase C. When intracellular cAMP concentrations of oocytes in the LPA and control groups were measured using the acetylation assay, the intracellular cAMP concentration of an oocyte in the LPA group was significantly lower than the control oocyte (0.117 +/- 0.04 fmol/oocyte vs. 0.176 0.036 fmol/oocyte, p < 0.05). In conclusion, our results suggested that lysophosphatidic acid stimulates phospholipase C through a Gi-protein linked receptor on the surface of mouse cumulus cells and stimulates both extracellular signal-regulated kinase and p38 mitogen-activated kinase, resulting in the closure or loose of gap junctions between cumulus cells and the oocyte. The resultant early decrease of oocyte cAMP levels may promote nuclear maturation of mouse oocytes in vitro. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available