4.8 Review

Toward exceeding the Shockley-Queisser limit: Photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 25, Pages 8234-8245

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja060470e

Keywords

-

Ask authors/readers for more resources

Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)(2)(deebq)](PF6)(2), [Ru(bq)(2)(deeb)](PF6)(2), [Ru(deebq)(2)(bpy)](PF6)(2), [Ru(bpy)(deebq)(NCS)(2)], or [Os(bpy)(2)(deebq)](PF6)(2), where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm(2). Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)(2)(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available